1,993 research outputs found

    Estradiol reverses excitatory synapse loss in a cellular model of neuropsychiatric disorders

    Get PDF
    Loss of glutamatergic synapses is thought to be a key cellular pathology associated with neuropsychiatric disorders including schizophrenia (SCZ) and major depressive disorder (MDD). Genetic and cellular studies of SCZ and MDD using in vivo and in vitro systems have supported a key role for dysfunction of excitatory synapses in the pathophysiology of these disorders. Recent clinical studies have demonstrated that the estrogen, 17β-estradiol can ameliorate many of the symptoms experienced by patients. Yet, to date, our understanding of how 17β-estradiol exerted these beneficial effects is limited. In this study, we have tested the hypothesis that 17β-estradiol can restore dendritic spine number in a cellular model that recapitulates the loss of synapses associated with SCZ and MDD. Ectopic expression of wildtype, mutant or shRNA-mediated knockdown of Disrupted in Schizophrenia 1 (DISC1) reduced dendritic spine density in primary cortical neurons. Acute or chronic treatment with 17β-estradiol increased spine density to control levels in neurons with altered DISC1 levels. In addition, 17β-estradiol reduced the extent to which ectopic wildtype and mutant DISC1 aggregated. Furthermore, 17β-estradiol also caused the enrichment of synaptic proteins at synapses and increased the number of dendritic spines containing PSD-95 or that overlapped with the pre-synaptic marker bassoon. Taken together, our data indicates that estrogens can restore lost excitatory synapses caused by altered DISC1 expression, potentially through the trafficking of DISC1 and its interacting partners. These data highlight the possibility that estrogens exert their beneficial effects in SCZ and MDD in part by modulating dendritic spine number

    Review of biorthogonal coupled cluster representations for electronic excitation

    Full text link
    Single reference coupled-cluster (CC) methods for electronic excitation are based on a biorthogonal representation (bCC) of the (shifted) Hamiltonian in terms of excited CC states, also referred to as correlated excited (CE) states, and an associated set of states biorthogonal to the CE states, the latter being essentially configuration interaction (CI) configurations. The bCC representation generates a non-hermitian secular matrix, the eigenvalues representing excitation energies, while the corresponding spectral intensities are to be derived from both the left and right eigenvectors. Using the perspective of the bCC representation, a systematic and comprehensive analysis of the excited-state CC methods is given, extending and generalizing previous such studies. Here, the essential topics are the truncation error characteristics and the separability properties, the latter being crucial for designing size-consistent approximation schemes. Based on the general order relations for the bCC secular matrix and the (left and right) eigenvector matrices, formulas for the perturbation-theoretical (PT) order of the truncation errors (TEO) are derived for energies, transition moments, and property matrix elements of arbitrary excitation classes and truncation levels. In the analysis of the separability properties of the transition moments, the decisive role of the so-called dual ground state is revealed. Due to the use of CE states the bCC approach can be compared to so-called intermediate state representation (ISR) methods based exclusively on suitably orthonormalized CE states. As the present analysis shows, the bCC approach has decisive advantages over the conventional CI treatment, but also distinctly weaker TEO and separability properties in comparison with a full (and hermitian) ISR method

    Homologous and heterologous desensitization of guanylyl cyclase-B signaling in GH3 somatolactotropes

    Get PDF
    The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders

    Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background

    Get PDF
    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability

    Peripheral artery disease assessed by ankle-brachial index in patients with established cardiovascular disease or at least one risk factor for atherothrombosis - CAREFUL Study: A national, multi-center, cross-sectional observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the presence of peripheral artery disease (PAD) via the ankle brachial index (ABI) in patients with known cardiovascular and/or cerebrovascular diseases or with at least one risk factor for atherothrombosis.</p> <p>Methods</p> <p>Patients with a history of atherothrombotic events, or aged 50-69 years with at least one cardiovascular risk factor, or > = 70 years of age were included in this multicenter, cross-sectional, non-interventional study (DIREGL04074). Demographics, medical history, physical examination findings, and physician awareness of PAD were analyzed. The number of patients with low ABI (< = 0.90) was analyzed.</p> <p>Results</p> <p>A total of 530 patients (mean age, 63.4 ± 8.7 years; 50.2% female) were enrolled. Hypertension and dyslipidemia were present in 88.7% and 65.5% of patients, respectively. PAD-related symptoms were evident in about one-third of the patients, and at least one of the pedal pulses was negative in 6.5% of patients. The frequency of low ABI was 20.0% in the whole study population and 30% for patients older than 70 years. Older age, greater number of total risk factors, and presence of PAD-related physical findings were associated with increased likelihood of low ABI (<it>p </it>< 0.001). There was no gender difference in the prevalence of low ABI, PAD symptoms, or total number of risk factors. Exercise (33.6%) was the most common non-pharmacological option recommended by physicians, and acetylsalicylic acid (ASA) (45.4%) was the most frequently prescribed medication for PAD.</p> <p>Conclusion</p> <p>Our results indicate that advanced age, greater number of total risk factors and presence of PAD-related physical findings were associated with increased likelihood of low ABI. These findings are similar to those reported in similar studies of different populations, and document a fairly high prevalence of PAD in a Mediterranean country.</p

    Asthma exacerbation and proximity of residence to major roads: a population-based matched case-control study among the pediatric Medicaid population in Detroit, Michigan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationship between asthma and traffic-related pollutants has received considerable attention. The use of individual-level exposure measures, such as residence location or proximity to emission sources, may avoid ecological biases.</p> <p>Method</p> <p>This study focused on the pediatric Medicaid population in Detroit, MI, a high-risk population for asthma-related events. A population-based matched case-control analysis was used to investigate associations between acute asthma outcomes and proximity of residence to major roads, including freeways. Asthma cases were identified as all children who made at least one asthma claim, including inpatient and emergency department visits, during the three-year study period, 2004-06. Individually matched controls were randomly selected from the rest of the Medicaid population on the basis of non-respiratory related illness. We used conditional logistic regression with distance as both categorical and continuous variables, and examined non-linear relationships with distance using polynomial splines. The conditional logistic regression models were then extended by considering multiple asthma states (based on the frequency of acute asthma outcomes) using polychotomous conditional logistic regression.</p> <p>Results</p> <p>Asthma events were associated with proximity to primary roads with an odds ratio of 0.97 (95% CI: 0.94, 0.99) for a 1 km increase in distance using conditional logistic regression, implying that asthma events are less likely as the distance between the residence and a primary road increases. Similar relationships and effect sizes were found using polychotomous conditional logistic regression. Another plausible exposure metric, a reduced form response surface model that represents atmospheric dispersion of pollutants from roads, was not associated under that exposure model.</p> <p>Conclusions</p> <p>There is moderately strong evidence of elevated risk of asthma close to major roads based on the results obtained in this population-based matched case-control study.</p

    The −675 4G/5G Polymorphism in Plasminogen Activator Inhibitor-1 Gene Is Associated with Risk of Asthma: A Meta-Analysis

    Get PDF
    BACKGROUND: A number of studies assessed the association of -675 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor (PAI)-1 gene with asthma in different populations. However, most studies reported inconclusive results. A meta-analysis was conducted to investigate the association between polymorphism in the PAI-1 gene and asthma susceptibility. METHODS: Databases including Pubmed, EMBASE, HuGE Literature Finder, Wanfang Database, China National Knowledge Infrastructure (CNKI) and Weipu Database were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association in the dominant model, recessive model, codominant model, and additive model. RESULTS: Eight studies involving 1817 cases and 2327 controls were included. Overall, significant association between 4G/5G polymorphism and asthma susceptibility was observed for 4G4G+4G5G vs. 5G5G (OR = 1.56, 95% CI 1.12-2.18, P = 0.008), 4G/4G vs. 4G/5G+5G/5G (OR = 1.38, 95% CI 1.06-1.80, P = 0.02), 4G/4G vs. 5G/5G (OR = 1.80, 95% CI 1.17-2.76, P = 0.007), 4G/5G vs. 5G/5G (OR = 1.40, 95% CI 1.07-1.84, P = 0.02), and 4G vs. 5G (OR = 1.35, 95% CI 1.08-1.68, P = 0.008). CONCLUSIONS: This meta-analysis suggested that the -675 4G/5G polymorphism of PAI-1 gene was a risk factor of asthma

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Designing Nanoconjugates to Effectively Target Pancreatic Cancer Cells In Vitro and In Vivo

    Get PDF
    Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells. Gold nanoparticles (GNPs) are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography). The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells.The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent) on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor), all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer.Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1) targeting agent to nanoparticle ratio 2) availability of reactive surface area on the nanoparticle 3) ability of the nanoconjugate to bind the target and 4) hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle conjugates

    Uncertain R&D Outcomes and Cooperation in R&D

    Get PDF
    The present paper provides a brief survey of some of the papers dealing with R&D uncertainty. This helps us identify which factors are more favorable for cooperative R&D and which factors are not. The paper provides the analysis under a unified framework. We take the classic paper by Marjit (1991) as the benchmark case, and then proceeds to examine whether, or to what extent, Marjit result will undergo a change with respect to different assumptions related to R&D investment
    corecore